Vector Theory for the Scattering of TM-polarized Hermite-Gaussian Electromagnetic Beams by a Double Metallic Slit

R. Salazar-Hernández, G. Montiel-González, J. Mulia-Rodríguez, J. Sumaya-Martinez
Facultad de Ciencias, Universidad Autónoma del Estado de Mexico, Toluca, Mexico
jsm@uaemex.mx

Abstract

We present a rigorous theory for oblique incident Hermite-Gaussian beams, diffracted by two slits of width ℓ and separation d, in a thick metallic screen for the case of polarization $\mathrm{TM}(\mathrm{S})$. The far field spectra as a function of several opto-geometrical parameters, wavelength λ, slit width ℓ, separation d , incidence angle θ_{i} and Hermite order m is analyzed. In the vectorial diffraction region given when $\lambda / \ell>0.2$, where ℓ is the incident wavelength and as a function of the separation between slits d; we have numerically analyzed: the far field spectra, the energy diffracted along the incident beam direction (E_{i}), and the validity of an approximate diffraction (scalar) property, namely $\mathrm{E}_{\mathrm{i}}=$ $N \tau / \lambda$.

Keywords: diffraction, scattering, double slit.

1 Introduction

Currently there are several rigorous theories of diffraction by plane electromagnetic waves (Enriquez et al., 2011) and Gaussian beams (Mata et al, 1993); (Mata et al, 1994) by two slits in metallic screens of zero thickness. However these theories do not treat with Hermite-Gauss or oblique incidence, nor thick screens of nonzero thickness (Mata et al, 2008).

In this paper we present a novel rigorous theory of diffraction that allows to consider the illumination by Hermite-Gaussian beams at oblique incidence on two slits of width ℓ and separation d in screens with infinite conductivity and thickness h.

In particular, we analyze the coupling between slits through the numerical study of the diffracted energy along the direction of the incident $\left(E_{i}\right)$ beam energy as a function of the parameter of separation d between the slits. It is revealed the existence of oscillations in the energy E_{i}. We also show that in the case of $\mathrm{TM}(\mathrm{S})$ polarization, the energy E_{i} is special because when compared to other diffraction
patterns. Finally, we show that the scalar property valid at the scalar region ($\lambda / \ell<0.2$) $E_{i}=N \tau / \lambda$ (Alvarez-Cabanillas, 1995) is not longer valid

2 A Vector Theory of Diffraction

In Fig. 1 we have two slits on a screen of infinite conductivity, and non-zero thickness denoted by h. In this screen you have two parallel to the Oz axis, ℓ wide and spaced slits d. The display is in the gap and impinges perpendicularly on it a HermiteGaussian beam with wavelength $\lambda=2 \pi / k$ and order m. We will use the complex representation for the fields and omit the time factor going forward $e^{-i \omega t} . H$ is the magnetic field when you have the TM (magnetic field parallel to the axis Oz) polarization. The H field satisfies the Helmholtz equation (Mata et al, 1994)

$$
\begin{equation*}
\partial^{2} \mathrm{H} / \partial \mathrm{x}^{2}+\partial^{2} \mathrm{H} / \partial \mathrm{y}^{2}+\mathrm{k}^{2} \mathrm{H}=0 \tag{1}
\end{equation*}
$$

Denote by H_{I} the solution of Eq (1) in the region I $(y>h / 2)$, expressed by a plane wave expansion:

$$
\begin{equation*}
\mathrm{H}_{\mathrm{I}}(\mathrm{x}, \mathrm{y})=\frac{1}{\sqrt{2 \pi}} \int_{-\mathrm{k}}^{\mathrm{k}} \mathrm{~A}(\alpha) \mathrm{e}^{\mathrm{i}(\alpha \mathrm{x}-\beta \mathrm{y})} \mathrm{d} \alpha+\frac{1}{\sqrt{2 \pi}} \int_{-\mathrm{k}}^{\mathrm{k}} \mathrm{~B}(\alpha) \mathrm{e}^{\mathrm{i}(\alpha \mathrm{x}+\beta \mathrm{y})} \mathrm{d} \alpha . \tag{2}
\end{equation*}
$$

The first integral is identified with the incident beam due to the sign of the α and β k-components.

In region II, within the screen, $-h / 2<y<h / 2$ the electromagnetic field will be represented by the following modal series:

Fig. 1. Our system. Two slits of width ℓ and spacing d in an infinitely thick conducting screen h. The energy diffracted along the incident direction $\left(E_{i}\right)$ is diffracted in the direction of θ (relative to the axis $\mathbf{O y}$) $=\theta_{i}$ (From the axis Ox).

$$
\begin{equation*}
\mathrm{H}_{\mathrm{II}}(\mathrm{x}, \mathrm{y})=\sum_{\mathrm{n}=0}^{\infty} \mathrm{a}_{\mathrm{n}}^{1} \varphi_{\mathrm{n}}^{1}(\mathrm{x}, \mathrm{y})+\sum_{\mathrm{n}=0}^{\infty} \mathrm{a}_{\mathrm{n}}^{2} \varphi_{\mathrm{n}}^{2}(\mathrm{x}, \mathrm{y}) \tag{3}
\end{equation*}
$$

where in $i=1,2$ the set $\varphi_{n}^{i}(x)$, are functions whose normal derivative is zero at the walls for the TM polarization.

The diffracted field below the screen, for $y<-h / 2$ (region III), could be expressed as a plane wave expansion too:

$$
\begin{equation*}
H_{I I I}(x, y)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} C(\alpha) e^{i(\alpha x+\beta y)} d \alpha \tag{4}
\end{equation*}
$$

Our goal is to determine the transmitted field (Eq. (4)), for which one needs to determine $C(\alpha)$. Note that $C(\alpha)$ depends on the coefficients a_{n}^{1} and a_{n}^{2} and the incident amplitude $A(\alpha)$. For this, we use the appropriate conditions of continuity, which could be obtained from Maxwell's equations (Alvarez-Cabanillas, 1995). These conditions lead us to the following matrix system, in which the matrix columns \boldsymbol{a}_{1} and $\boldsymbol{a}_{\mathbf{2}}$ are formed respectively by the coefficient a_{n}^{1} and a_{n}^{2}.

$$
\begin{align*}
& M_{11} a_{1}+M_{12} a_{2}=S_{1} \\
& M_{21} a_{1}+M_{22} a_{2}=S_{2} \tag{5}
\end{align*}
$$

where $M_{i k}(i, k=1,2)$ are square matrices dependent on the opto-geometrical parameters and $S_{i}(i=1,2)$ are matrices depending only on $A(\alpha)$. The determination of the modal coefficients a_{n}^{1} and a_{n}^{2}. allow us to calculate the diffracted field in any region for TM polarization.

3 Results and Discussion

Using the complex Poynting vector is possible to obtain the diffracted intensity at the angle θ. For a Hermite-Gaussian beam, the spectral amplitude is (Mata et al, 2008):

$$
\begin{gather*}
A(\alpha)=\frac{L}{2} i^{m} H_{m}\left[-\frac{L}{2}\left(\alpha \sin \theta_{i}-\beta \cos \theta_{i}\right)\right] \times\left[\sin \theta_{i}+\left(\frac{\alpha}{\beta}\right) \cos \theta_{i}\right] e^{(-i \alpha b)} \times \tag{6}\\
e^{\left[-\left(\alpha \sin \theta_{i}-\beta \cos \theta_{i}\right)^{2} L^{2} / 8\right]}
\end{gather*}
$$

where H_{m} is the Hermite polynomial of order m. The position of the beam waist is given by the parameter b (see Fig. 1).

In the figures relating to energy diffracted along the direction of the incident beam is $E_{i}\left(\theta=\theta_{i}\right)$ the diffracted angle in the direction of the incident beam, measured from the axis $O x$ and θ_{i} is the angle of incident beams to the axis Oy measured. The energy, the diffracted intensity $I(\theta)$ and the transmission coefficient τ are normalized to the total incident energy I_{0}. All parameters normalized opto-geometrical width lof the slots ℓ, that is,,$\ell=1$.

In Figs. 2 and 3 show the diffraction patterns of Hermite-Gaussian beams for the fundamental mode $m=0$ at normal incidence and oblique incidence of 30°; the
wavelength of the incident beams is $\lambda / \ell=0.9$, with extremely wide Gaussian beams $\mathrm{L} / \ell=500 / \sqrt{2}$ and fixed at the position $b / \ell=0.5$, the thickness of the screen is h / ℓ $=1$ and the gaps between slits are $d / \ell=0,1,3.5$ and 5 .

The shape of the diffraction patterns for the $m=2$ mode, not shown, is identical to the spectra of FIGS. 2 and 3 (with the same opto-geometrical parameters) except for a scaling factor which provides a lower intensity for this mode, from the respective Hermite polynomial.

From these diffraction patterns we have taken the diffracted energy E_{i} along the direction of the incident beams. Figs. 4 and 5 show the behavior of the E_{i} separation according to d for $m=0$ and 2 modes; opto-geometrical parameters of these figures are the same in Fig. 2 and 3.

Fig. 2. Diffraction patterns normalized $\left(I(\theta) / I_{0}\right)$ of Hermite-Gaussian beams of $m=0$ normally incident on two slits so. With $\lambda / \ell=0.9, \mathrm{~L} / \ell=500 / \sqrt{2}, h / \ell=1$ and position $b / \ell=0.5$ and for separations $d \ell=0,1,3.5$ and 5 .

The curves of FIGS. 4 and 5 show the oscillatory behaviors as E_{i} a function of the spacing d, in particular for the period is normal incidence to oblique incidence λ and the period is 2λ.

Fig. 3. Standard diffraction patterns $\left(I(\theta) / I_{0}\right)$ Hermite-Gaussian beam for $m=0$ to 30° obliquely incident on two slits so. Same parameters of Fig.2.

In Fig. 5 has also been drawn in broken lines the $2 \tau / \lambda$ function. As you can see, this function does not overlap with the energy with E_{i} which we can say that the property of diffraction $E_{i}=2 \pi / \lambda$ is not valid in the vector region at least for the separation parameter d and doing extremely wide.

Finally, in Fig. 6 different diffracted energy around the energy is E_{i}. The upper curves of Figure 6 correspond to normal incidence for the $m=2$ mode, with the same parameters of Fig. 3; diffracted energies correspond to the angles diffracted $\theta=$ $90^{\circ}, 91^{\circ}, 92^{\circ}$ and 94°. The curves in the lower window of Fig. 6 correspond to
oblique incidence of 30°, also for mode $m=2$, with the same parameters of Fig. 4. The diffracted energies shown, corresponding to angles diffracted around of $\theta=60$ ${ }^{\circ}$ (corresponding to the diffracted energy along the oblique incidence angle $\theta_{i}=$ 30°) and for the angles $58^{\circ}, 57^{\circ}$ and 64°.

Fig. 4. Energy diffracted in the direction normal to the standard E_{i} to Hermite-Gauss beam, depending on the spacing d / ℓ screen. For the fundamental mode $m=0$, at normal incidence and oblique incidence of 30°, with $\lambda / \ell=0.9, \mathrm{~L} / \ell=500 / \sqrt{2}, h / \ell=1, \mathrm{y} \mathrm{b} / \ell=0.5$.

Fig. 5. Energy diffracted in the direction normal to the E_{i} (solid line) Hermite-Gauss beam, thus $m=2$ and $2 \tau / \lambda$ property (dashed line), in function of the spacing d / ℓ. Same parameters of Fig. 3.

Energy analyzing energy diffracted E_{i} around for $m=0$ at normal incidence and oblique incidence of 30° as also carried out (data not shown) found similar patterns
for mode $m=2$ (see Fig. 6), the energy diffracted around the energy as E_{i} a function of the spacing d, decay to zero.

Fig. 6. Energy diffracted around energy $E_{i}(\theta=\theta i)$ Hermite-Gauss beam, for the $m=2$ mode according to the distance between slits d / ℓ. Same parameters of Fig. 4.

4 Conclusions

Present a more rigorous theory of diffraction for the oblique incidence beam HermiteGaussian (HG) on a screen of thickness h with wide slits separating slits ℓ and d. In the case of $\operatorname{TM}(S)$ polarization and wavelengths in the vector region $\frac{\lambda}{l}>0.2$, we have found that the diffracted along the direction of the incident beam energy has oscillations period λ as a function of the spacing d for modes $m=0$ and 2 , for the period 2λ at 30° oblique incidence. Finally, we note that the energy E_{i} has special characteristics compared diffracted energies in other directions and found numerically that ownership of scalar diffraction $(\lambda / \ell<0.2)$ given by $E_{i}=2 \tau / \lambda$ is no longer valid in this region $(\lambda / \ell>0.2)$.

References

1. Enriquez-Leon, G., Martinez-Flores, M. G., Torres-Morales, G., Sumaya-Martinez, J.: Rigorous diffraction of Hermite-Gaussian beams by a double slit. TM polarization. Eight Symposium Optics in Industry (2011)
2. Mata-Méndez, O., Chávez-Rivas, F.: Estudio teórico y numérico de la difracción en óptica electromagnética, II Teoría rigurosa de la difracción de un haz gaussiano por dos rendijas, Polarización TE. Revista Mexicana de Física, 39(5), pp. 706-721 (1993)
3. Mata-Méndez, O., Álvarez-Cabanillas, M. A.: Estudio teórico y numérico de la difracción en óptica electromagnética, III Teoría rigurosa de la difracción de un haz gaussiano por dos rendijas, Polarización TM. Revista Mexicana de Física, 40(6), pp. 846-856 (1994)
4. Mata-Méndez, O., Chávez-Rivas, F., Ortiz-Acebedo, A.: Diffraction of hermite-gaussian beams by Ronchi and aperiodic rulings. Revista Mexicana de Física, 54(1), pp. 35-4 (2008)
5. Álvarez-Cabanillas, M. A.: Tratamiento riguroso para la difracción de un haz HermiteGauss a través de N-rendijas. ESFM-IPN, Tesis Doctoral (1995)
